Two weeks ago, we had a counselling session in the clinic for children with Type 1 diabetes mellitus (a type of diabetes that totally depends on taking an artificial form of the normal insulin produced in the body to be able to stay healthy and alive) when I rotated through the Endocrinology Unit of our Paediatrics department; these patients came along with their family members, and a pharmaceutical company that manufactures artificial insulin was also invited. Our consultant endocrinologist headed the counselling session, educating and re-educating these paediatric patients and their families on the management of their medical condition--diabetes--through lifestyle modification (taking the appropriate food, drinks and so on) and appropriate use of the injectable insulin: how many times to inject themselves with insulin in a day; on ensuring they take some insulin shots before meals; and so on.
|
Digitized Insulin Pump linked to
a Health Management Software on
a PC for patients and Physicians.
Image credit to Tandem Diabetes Care |
These children, I must say, were learning from these periodic sessions evidenced by how they gave very detailed accounts of what they have learnt and the risks of not adhering to the guidelines given to them. But worried me as I sat among my fellow medical students that day was the constant pricking these children would have to endure every day to take their insulin because the only insulin therapy still available in Nigeria currently is the injectable insulin (variations exist such as the insulin syringes and the insulin pen which the invited pharmaceutical company displayed and educated the patients on how to make use of). Aside this, even the insulin pumps (with all the newest modifications they have undergone) that are common in developed parts of the world still require the patient to insert the infusion set under the skin and carry it around (hence, the patient has to always be cautious about some activities in order not to disrupt the inserted infusion set of the pump which would dislodge the pump from the body and pose health risk to the patient).
|
Afrezza Technosphere Inhalable
Insulin. Image credit to Mannkind Corp. |
The highlighted worry above is not just the problem faced by diabetic patients in Nigeria alone, but the world over. Though, research (such as artificial pancreas, pancreas transplant and so on) is intense to address this major problem of invasive insulin self administration, something immediate need to be done to reduce the need for needle pricking several times a day by people with diabetes, especially Type 1 (people with this type of diabetes may die if the level of sugar in their blood goes far above or below a certain level, and hence a standby insulin at all times is very essential). And it seems that there is hope (though for now not for Nigerians with diabetes) as the
US Food and Drug Administration, FDA (the US version of Nigeria's NAFDAC), on the 27th of June this year approved an inhalable form of insulin called
Afrezza designed by the US pharmaceutical company Mannkind Corporation, after the FDA advisory panel met in April this year and over 90% of the members voted in favour of the inhalable insulin, following data gathered from the clinical trials confirming its efficacy was carried out in over 3000 patients with both Type 1 and 2 diabetes (Afrezza is not the first attempt at making inhalable insulin: the pharmaceutical company
Pfizer did come up with its own inhalable insulin called Exubera developed by a company Nektar Therapeutics far back in 2005 but the product was pulled out of the market in 2007 because of the lung problems that ensued in some users, the high cost and lack of benefit over the injected insulin). The FDA has mandated that Afrezza be subjected to post-market study to monitor possible long-term outcomes, one of which is the possibility of some patients having lung cancer from the use of the product.
The Afrezza inhalable insulin uses what its manufacturer calls the Technosphere technology (particles in
powder form made up of biologically non reactive chemicals that carry the artificial insulin to the lungs once inhaled, and they completely separate from the insulin in the lungs to allow rapid absorption into the blood) to deliver inhaled insulin to the lungs where the insulin is absorbed rapidly into the blood, reaching maximum level between 15 and 20 minutes, hence preventing any imminent sugar overload of the blood, especially after meals. Afrezza inhalable insulin is contraindicated in patients who smoke or have asthma, or chronic obstructive lung diseases such as bronchiectasis.
The major setback though is that the inhalable insulin cannot replace the long-acting insulin needed by Type 1 diabetic patients, meaning that these patients still need to inject insulin, but probably once a day, while using the inhalable insulin before or a few minutes into their meals. Now, this is where something can also be done, maybe not immediate.
Women have the option of using the implantable contraceptives (which are inserted surgically, under local anaesthesia so that no pain is felt, deep into the skin of the inner part of the upper arm or thigh) which deliver artificial oestrogen and progesterone at rates required to prevent pregnancy for at least 3 years. Something similar, I think, can be done in the case of insulin: we can have insulin implants designed to release insulin at rates required for the basal level in these diabetic patients. This will replace the long-acting insulin injection and last for probably up to 3 years before it could be replaced; there is still pricking, but this time it is probably once in 3 years and then it is done under local anaesthesia, so the patient would not feel any pain. I believe work is ongoing on something like this.